

WEEKLY TEST TYJ TEST 16 UNISION SOLUTION Date 08-12-2019

[PHYSICS]

1. Let displacement equation of particle executing SHM is

$$y = a \sin \omega t$$

As particle travels half of the amplitude from the equilibrium position, so

$$y = \frac{a}{2}$$
 Therefore,
$$\frac{a}{2} = a \sin \omega t$$
 or
$$\sin \omega t = \frac{1}{2} = \sin \frac{\pi}{6}$$
 or
$$\omega t = \frac{\pi}{6}$$

or
$$t = \frac{\pi}{6\omega}$$
 or
$$t = \frac{\pi}{6\left(\frac{2\pi}{T}\right)}$$
 (as $\omega = \frac{2\pi}{T}$) 60. Given, and
$$t = \frac{T}{12}$$

Hence, the particle travels half of the amplitude from equilibrium in $\frac{T}{12}$ s.

2. 3.

or

Time period of a simple pendulum 4.

$$T = 2\pi \sqrt{\frac{l}{g}}$$

It is independent of the mass of the bob. Therefore time period of the pendulum will remain T.

5.

(b) Use the law of conservation of energy. Let x be the 6. extension in the spring.

Applying conservation of energy

$$mgx - \frac{1}{2}kx^2 = 0 - 0 \implies x = \frac{2mg}{k}$$

7. (c) The two displacement equations are $y_1 = a \sin(\omega t)$

and
$$y_2 = b \cos(\omega t) = b \sin\left(\omega t + \frac{\pi}{2}\right)$$

$$y_{eq} = y_1 + y_2$$

$$= a \sin \omega t + b \cos \omega t$$

$$= a \sin \omega t + b \sin \left(\omega t + \frac{\pi}{2}\right)$$

Since the frequencies for both SHMs are same, resultant motion will be SHM.

Now
$$A_{eq} = \sqrt{a^2 + b^2 + 2ab \cos \frac{\pi}{2}}$$

8. **(d)** As springs are connected in series, effective force constant

$$\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} \implies k = \frac{k_1 k_2}{k_1 + k_2}$$

Hence, frequency of oscillation is

$$n = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{k_1 k_2}{(k_1 + k_2)m}}$$

9. **(c)**
$$n = \frac{1}{2\pi} \sqrt{\frac{K_{\text{effective}}}{m}}$$

Springs are connected in parallel

$$K_{\text{eff}} = K_1 + K_2 = K + 2K = 3K$$

$$\Rightarrow n = \frac{1}{2\pi} \sqrt{\frac{(K+2K)}{m}} = \frac{1}{2\pi} \sqrt{\frac{3K}{m}}$$

 (a) As springs are connected in series, effective force constant

$$\frac{1}{k_{\text{eff}}} = \frac{1}{k} + \frac{1}{k} = \frac{2}{k} \implies k_{\text{eff}} = \frac{k}{2}$$

Hence, frequency of oscillation is

$$n = \frac{1}{2\pi} \sqrt{\frac{k_{\text{eff}}}{m}} = \frac{1}{2\pi} \sqrt{\frac{k}{2M}}$$

 The motion of planets around the sun is periodic but not simple harmonic motion.

12. For freely falling case the effective g is zero, so that frequency of oscillation will be zero.

As
$$f = \frac{1}{2\pi} \sqrt{\frac{g_{el}}{\lambda}}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{0}{\lambda}}$$

13. $x(t) = A\cos(\omega t + \phi)$ where, ϕ is the phase constant.

14.
$$y_1 = 5 \left[\sin 2\pi t + \sqrt{3} \cos 2\pi t \right]$$

$$= 10 \left[\frac{1}{2} \sin 2\pi t + \frac{\sqrt{3}}{2} \cos 2\pi t \right]$$

$$= 10 \left[\cos \frac{\pi}{3} \sin 2\pi t + \sin \frac{\pi}{3} \cos 2\pi t \right]$$

$$= 10 \left[\sin \left(2\pi t + \frac{\pi}{2} \right) \right] \Rightarrow A_1 = 10$$
Similarly,
$$y_2 = 5 \sin \left(2\pi t + \frac{\pi}{4} \right)$$

$$\Rightarrow A_2 = 5$$
Hence,
$$\frac{A_1}{A_2} = \frac{10}{5} = \frac{2}{1}$$

- 15. Phase difference $\Delta \phi = \phi_1 \phi_2$ $= \frac{3\pi}{6} \frac{\pi}{6}$ $= \frac{2\pi}{6} = \frac{\pi}{3}$
- 16. In SHM, the acceleration is ahead of velocity by a phase angle $\frac{\pi}{2}$.

- The average acceleration of a particle performing SHM over one complete oscillation is zero.
- By using $k \propto \frac{1}{l}$ Since, one-fourth length is cut away so remaining length is $\frac{3}{4}$ th, hence k becomes $\frac{4}{3}$ times ie, $k' = \frac{4}{3}k$.

19. For the given figure,

$$f = \frac{1}{2\pi} \sqrt{\frac{k_{\text{eq}}}{m}} \qquad \dots (i)$$
$$= \frac{1}{2\pi} \sqrt{\frac{2k}{m}}$$

If one spring is removed, then $k_{eq} = k$ and

$$f' = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \qquad \dots \text{(ii)}$$

From Eqs. (i) and (ii), we get

$$\frac{f}{f'} = \sqrt{2}$$
$$f' = \frac{1}{\sqrt{2}}$$

- 20. In a complete cycle of SHM, potential energy varies for half the cycle and kinetic energy varies for the other half of the cycle. Thus, for a time period T, the potential energy varies for $\frac{T}{2}$ time.
- 21. 3
- 22. 5 Resultant amplitude = $\sqrt{3^2 + 4^2} = 5$
- 23. 2
- 24. 2 If t is the time taken by pendulums to come in same phase again first time after t = 0.

and $N_S = \text{Number of oscillations made by shorter}$ length pendulum with time period T_S .

 $N_{L}=\mbox{Number of oscillations}$ made by longer length pendulum with time period T_{L} .

Then
$$t = N_S T_S = N_I T_I$$

$$\Rightarrow N_S 2\pi \sqrt{\frac{5}{g}} = N_L \times 2\pi \sqrt{\frac{20}{g}} \qquad (\because T = 2\pi \sqrt{\frac{l}{g}})$$

$$\Rightarrow N_S = 2N_L \text{ i.e. if } N_L = 1 \Rightarrow N_S = 2$$

25. From the relation of restitution $\frac{h_n}{h_0} = e^{2n}$ and

$$h_n = h_0 (1 - \cos 60^\circ) \implies \frac{h_n}{h_0} = 1 - \cos 60^\circ = \left(\frac{2}{\sqrt{5}}\right)^{2n}$$

$$\Rightarrow 1 - \frac{1}{2} = \left(\frac{4}{5}\right)^n \Rightarrow \frac{1}{2} = \left(\frac{4}{5}\right)^n$$

Taking log of both sides we get

$$\log 1 - \log 2 = n(\log 4 - \log 5)$$

$$0 - 0.3010 = n(0.6020 - 0.6990)$$

$$-0.3010 = -n \times 0.097 \implies n = \frac{0.3010}{0.097} = 3.1 \approx 3$$

[CHEMISTRY]

26.

The conjugate acid-base pairs are (HCl, Cl^-) and ($CH_3COOH_2^+$, CH_3COOH).

27.

The conjugate acids are H_2O , NH_3 , $HC \equiv CH$ and CH_3CH_3 . Their order of acid strength is $CH_3CH_3 < NH_3 < HC \equiv CH < H_2O$. Their conjugate base follows the reverse order.

28.

 $\mathrm{NH_3}$ donates pair of electrons while $\mathrm{BF_3},\ \mathrm{Cu^{2^+}}$ and $\mathrm{AlCl_3}$ accept lone pair of electrons.

29.

Acid
$$\xrightarrow{-H^+}$$
 Conjugate base, Base $\xrightarrow{+H^+}$ Conjugate acid

30.

H₂O⁺ (acid), H₂O (conjugate base) and not OH⁻.

31. 32.

For each weak polyprotic acid $K_{a_1} > K_{a_2} > K_{a_3}$

33.

H₂O is the weaker base, hence, its conjugate acid is the stronger acid,

$$H_2O + H^+ \rightleftharpoons H_3O^+$$

H₂O is the weakest acid, hence, its conjugate base is the strongest base.

$$H_2O \rightleftharpoons OH^- + H^+$$

34.

pH [HCl] = 2.0
∴ [H⁺] =
$$10^{-2}$$
 M
[HCl] = 10^{-2} M
Volume = 200 mL
pH [NaOH] = 12.0
pOH = 2.0
[OH⁻] = 10^{-2} M
[NaOH] = 10^{-2} M
Volume = 300 mL
 N_1V_1 (acid) = $200 \times 10^{-2} = 2$
 N_1V_2 (base) = $300 \times 10^{-2} = 3$
 $N_2V_2 > N_1V_1$

Thus, resultant mixture basic.

N(OH⁻) =
$$\frac{N_2V_2 - N_1V_1}{V_1 + V_2} = \frac{3 - 2}{500} = 2 \times 10^{-3} \text{ M}$$

pOH = $-\log (2 \times 10^{-3}) = 2.7$
pH = 14 - pOH 14 - 2.7 = 11.3

35.

[H⁺] after mixing =
$$\frac{10^{-2} \times 10 + 10^{-4} \times 990}{1000} = \frac{0.1 + 0.0990}{1000}$$

= $\frac{0.1990}{1000} = 1.99 \times 10^{-4}$
pH = (log 1.99 × 10⁻⁴)
 \therefore pH = 4 - 0.3 = 3.7

36.

$$[H^{+}] = \frac{50 \times 10^{-1} + 50 \times 10^{-2}}{100} = 5.5 \times 10^{-2} M$$

$$pH = log (1.99 \times 10^{-4})$$

$$pH = 2 - 0.74 = 1.26$$

37.

On heating pure water the value of ionic product of water increases i.e., $K_w = 10^{-14}$ at 25°C and at 100°C, $K_w = 10^{-12}$. Thus pH and pOH both become 6 at 100°C (pH and pOH = 7 at 25°C).

38.

- (a) At 25°C, [H $^+$] in a solution of 10^{-8} M HCl $\geq 10^{-7}$ M.
- (b) $[H^+] = 10^{-8} M$.
- (c) $[OH^{-}] = 4 \times 10^{-6} \text{ M}$ \Rightarrow $[H^{+}] = 2.5 \times 10^{-9} \text{ M}$
- (d) $[H^+] = 10^{-9} \text{ M}$

39.

 K_w changes with temperature. As temperature increases, [OH⁻] and [H⁺] decrease.

40.

The dissociation of H₃BO₃ is

$$H_3BO_3 + H_2O \rightarrow H_2BO_3^- + H_3O^+$$

$$K_1 = \frac{[\text{H}_2 \text{BO}_3^-][\text{H}_3 \text{O}^+]}{[\text{H}_3 \text{BO}_3]} = \frac{(0.18).x}{(01.0)} = 7.3 \times 10^{-10}$$

or
$$x = [H_3O^+] = 4.1 \times 10^{-10}$$

or $pH = -\log x = -\log (4.1 \times 10^{-10}) = 9.39$

41.

No. of milli eq. =
$$\frac{1}{10} \times 100 = 10$$
 $\frac{1}{10} \times 100 = 10$

So solution is neutral

(b)
$$\frac{1}{10} \times 55 = 5.5$$
 $\frac{1}{10} \times 45 = 4.5$
 $[H^+] = \frac{1}{100} = 10^{-2} \text{M}, \text{ pH} = 2$

$$[H^*] = \frac{1}{100} = 10^{-10} \text{ M}, \text{ pH} = 2$$

(c)
$$\frac{1}{10} \times 10 = 1$$
 $\frac{1}{10} \times 90 = 9$ Basic

(d)
$$\frac{1}{5} \times 75 = 15$$
 $\frac{1}{5} \times 25 = 5$ [H⁺] = 0.1 M, pH = 1

42.

$$\begin{array}{lll} \mbox{Initial} & \mbox{Final} \\ \mbox{pH} = 12 & \mbox{pH} = 11 \\ \mbox{[H^+]} = 10^{-12} \, \mbox{M} & \mbox{[H^+]} = 10^{-11} \, \mbox{M} \\ \mbox{[OH^-]} = 10^{-2} \, \mbox{M} & \mbox{[OH^-]} = 10^{-3} \, \mbox{M} \end{array}$$

Initial no. of mole of $OH^- = 10^{-2}$

Final no. of mole of $OH^- = 10^{-3}$

So no. of mole of OH⁻ removed = [0.1 - 0.001] = 0.009

43.

$$pK_{w} = -\log K_{w} = -\log 1 \times 10^{-12} = 12.$$

$$K_{w} = [H^{+}][OH^{-}] = 10^{-12}$$

$$[H^{+}] = [OH^{-}]$$

$$\Rightarrow [H^{+}]^{2} = 10^{-12}; [H^{+}] = 10^{-6}; pH = -\log [H^{+}] = -\log 10^{-6} = 6.$$

$$H_{2}O \text{ is neutral because } [H^{+}] = [OH^{-}] \text{ at } 373 \text{ K even when } pH = 6.$$
(d) is not correct at 373 K. Water cannot become acidic.

44.

Relative strength of weak acids =
$$\sqrt{\left(\frac{K_{a_1}}{K_{a_2}} \times \frac{C_1}{C_2}\right)}$$

 \therefore Relative strength = $\sqrt{\left(\frac{K_{a_1}}{K_{a_2}}\right)}$ ($\because C_1 = C_2$) = $\sqrt{\left(\frac{2 \times 10^{-4}}{2 \times 10^{-5}}\right)}$
Relative strength for HCOOH to CH₃COOH = $\sqrt{10}$:1

45.

$$pH = 13$$

$$[H^+] = 10^{-13} \text{ M}$$

$$[OH^-] = 10^{-1} \text{ M} = 0.1 \text{ mol } L^{-1}$$

$$[Ba(OH)_2] = 0.1 \text{ N},$$

$$= 0.1 \times 100 = 10 \text{ milliequivalents}$$

46.

Meq. of
$$HCl = 10 \times 10^{-1} = 1$$

Meq. of $NaOH = 10 \times 10^{-1} = 1$
Thus both are neutralised and 1 Meq. of NaCl (a salt of strong acid and strong base) which does not hydrolyse and thus $pH = 7$.

47. 7

48.
$$[H^+] = [OH^-]$$

 $K_w = [H^+] [OH^-] = 10^{-14}$
 $\therefore [H^+] = 10^{-7}, pH = -\log[H^+] = 7.$

49.
$$pH = -\log [H^+]; [H^+] = 0.01N$$

 $pH = -\log [10^{-2}]; pH = 2$

50. NaOH is a base, so that its pH > 7

[MATHEMATICS]

51. (a) Radius of circle is
$$\left| \frac{2+3-4}{\sqrt{5}} \right| = \frac{1}{\sqrt{5}}$$

Therefore, equation is $(x-1)^2 + (y+3)^2 = \frac{1}{5}$

or $x^2 + y^2 - 2x + 6y + 1 + 9 = \frac{1}{5}$

or $5x^2 + 5y^2 - 10x + 30y + 49 = 0$.

52. (b) Centre of circle = Point of intersection of diameters = (1, -1)Now area = $154 \Rightarrow \pi r^2 = 154 \Rightarrow r = 7$ Hence the equation of required circle is $(x-1)^2 + (y+1)^2 = 7^2 \Rightarrow x^2 + y^2 - 2x + 2y = 47$. 53. (b) Centre (1, 2) and since circle touches x-axis, therefore, radius is equal to 2. Hence the equation is $(x-1)^2 + (y-2)^2 = 2^2$

$$\Rightarrow x^2 + y^2 - 2x - 4y + 1 = 0$$
.

Trick: The only circle is $x^2 + y^2 - 2x - 4y + 1 = 0$, whose centre is (1, 2).

54. (c) $2\sqrt{g^2 - c} = 2a$ (i) $2\sqrt{f^2 - c} = 2b$ (ii)

On squaring (i) and (ii) and then subtracting (ii) from (i), we get $g^2 - f^2 = a^2 - b^2$. Hence the locus is $x^2 - y^2 = a^2 - b^2$.

- 55. (b) The diameter of the circle is perpendicular distance between the parallel lines (tangents) 3x 4y + 4 = 0 and $3x 4y \frac{7}{2} = 0$ and so it is equal to $\frac{4}{\sqrt{9+16}} + \frac{7/2}{\sqrt{9+16}} = \frac{3}{2}$. Hence radius is $\frac{3}{4}$.
- 56. (c) Centre is (2, 3). One end is (3, 4). P_2 divides the join of P_1 and P_2 is $\left(\frac{4-3}{2-1}, \frac{6-4}{2-1}\right) \equiv (1, 2)$.
- 57. (c) In the equation of circle, there is no term containing xy and coefficient of x^2 and y^2 are equal. Therefore $2-q=0 \Rightarrow q=2$ and p=3.
- 58. (c) Here $2\sqrt{g^2-c} = 2a \Rightarrow g^2-a^2-c = 0$ (i) and it passes through (0, *b*), therefore $b^2 + 2fb + c = 0$ (ii) On adding (i) and (ii), we get $g^2 + 2fb = a^2 b^2$ Hence locus is $x^2 + 2by = a^2 b^2$.
- 59. (d) See condition for circle and also condition for circle to pass through origin *i.e.* origin satisfies equation of circle or c = 0.
- 60. (b) $x = 2 + 3\cos\theta$, $y = 3\sin\theta 1$ $x^2 + y^2 = 4 + 9\cos^2\theta + 12\cos\theta + 9\sin^2\theta + 1 - 6\sin\theta$ $= 14 + 12\cos\theta - 6\sin\theta$ $= 4(2 + 3\cos\theta) - 2(3\sin\theta - 1) + 4$ $\Rightarrow x^2 + y^2 = 4x - 2y + 4$ $\Rightarrow (x^2 - 4x + 4) + (y^2 + 2y + 1) = 9$ $\Rightarrow (x - 2)^2 + (y + 1)^2 = 9$, \therefore centre is (2, -1).

61. (b) Here the equation of AB (chord of contact) is

$$0 + 0 - 3(x + 0) - 4(y + 0) + 21 = 0$$

$$\Rightarrow 3x + 4y - 21 = 0$$

CM = perpendicular distance from (3, 4) to line (i) is

$$\frac{3 \times 3 + 4 \times 4 - 21}{\sqrt{9 + 16}} = \frac{4}{5}$$

$$AM = \sqrt{AC^2 - CM^2} = \sqrt{4 - \frac{16}{25}} = \frac{2}{5}\sqrt{21}$$

$$\therefore AB = 2AM = \frac{4}{5}\sqrt{21} .$$

- 62. (b) Point is inside, outside or on the circle as S_1 is <, >, = 0. For point (-2, 1), $S_1 < 0$.
- 63. (c) y = mx + c is a tangent, if $c = \pm a\sqrt{1 + m^2}$, where $m = \tan 45^\circ = 1$ \therefore The equation is $y = x \pm 6\sqrt{2}$.
- 64. (c) Radius of given circle > Perpendicular distance from the centre of circle to the given line.

$$\Rightarrow \sqrt{4 + 16 + 5} > \frac{3(2) - 4(4) - m}{\sqrt{9 + 16}}$$

$$\Rightarrow \pm 25 > -10 - m \Rightarrow m + 10 > \pm 25 \Rightarrow -35 < m < 15$$
.

65. (a) $T \equiv x + \sqrt{3}y - 4 = 0$

Hence the required area $=\frac{1}{2} \times 4 \times \sqrt{3} = 2\sqrt{3}$.

66. (b) Length of tangent is $\sqrt{S_1}$.

Equation of circle is
$$x^2 + y^2 - \frac{r^2}{a} = 0$$

Hence
$$S_1 = \alpha^2 + \beta^2 - \frac{r^2}{a}$$
.

67. (c) Let $P(x_1, y_1)$ be a point on $x^2 + y^2 = 4$. Then the equation of the tangent at P is $xx_1 + yy_1 = 4$ which meets the coordinate axes at $A\left(\frac{4}{x_1}, 0\right)$ and $B\left(0, \frac{4}{y_1}\right)$. Obviously, (a) and (b) are not true.

Let (h, k) be the mid-point of AB.

Therefore
$$h = \frac{2}{x_1}$$
, $k = \frac{2}{y_1}$ i.e., $x_1 = \frac{2}{h}$, $y_1 = \frac{2}{k}$

But
$$(x_1, y_1)$$
 lies on $x^2 + y^2 = 4$.

68. (d) Here radius of circle is

and
$$CB = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{10}{4}} = \sqrt{\frac{5}{2}}$$

Now
$$AB^2 = AC^2 - BC^2 = \frac{3}{2} - \frac{5}{2} = -1$$

 \Rightarrow There is no possible value for AB.

Aliter: Since the point (1, 1) lies outside the circle, therefore no such chord exist.

(c) The common chord of given circles is

$$2x - 6y - 4 - a = 0$$

Since, $x^2 + y^2 = 4$ bisects the circumference of the circle $x^2 + y^2 - 2x + 6y + a = 0$, therefore, (i) passes through

$$\therefore 2 + 18 - 4 - a = 0 \Rightarrow a = 16.$$

the centre of second circle i.e., (1, -3).

- (a) It is $xx_1 + yy_1 = a^2$ i.e., 5x 3y = 10.
- 71. Here the centre of circle (3, -1) must lie on the line x + 2by + 7 = 0.

Therefore, $3-2b+7=0 \Rightarrow b=5$.

- 72. (c) Centres of circles are $C_1(2,3)$ and $C_2(-3,-9)$ and their radii are $r_1=5$ and $r_2=8$. Obviously $r_1 + r_2 = C_1C_2$ i.e., circles touch each other externally. Hence there are three common tangents.
- The centre of the given circle is (1, 3) and radius is 2. So, AB is a diameter of the given circle has its mid point as 73. (1,3). The radius of the required circle is 3.
- 74. Let $P = (x_1, y_1)$. The tangent at P is $xx_1 + yy_1 + 3(x + x_1) + 3(y + y_1) - 2 = 0$

Co-ordinates of Q satisfy (i), 5x - 2y + 6 = 0, x = 0.

So,
$$3x_1 + 6y_1 + 7 = 0$$
 and $Q = (0,3)$

$$PQ^2 = x_1^2 + (y_1 - 3)^2 = x_1^2 + y_1^2 - 6y_1 + 9$$

=
$$11 - 6x_1 - 12y_1$$
, $(:: x_1^2 + y_1^2 + 6x_1 + 6y_1 - 2 = 0)$

$$= 11 - 2(3x_1 + 6y_1) = 11 - 2(-7) = 25$$
. So, $PQ = 5$.

Radius = perpendicular distance from (1, -3) to 75

$$3x-4y-5=0$$
, i.e. $\left|\frac{3+12-5}{\sqrt{5^2}}\right|=2$.